Semi-Physical Estimates of National-Scale PM10 Concentrations in China Using a Satellite-Based Geographically Weighted Regression Model
نویسندگان
چکیده
The estimation of ambient particulate matter with diameter less than 10 μm (PM10) at high spatial resolution is currently quite limited in China. In order to make the distribution of PM10 more accessible to relevant departments and scientific research institutions, a semi-physical geographically weighted regression (GWR) model was established in this study to estimate nationwide mass concentrations of PM10 using easily available MODIS AOD and NCEP Reanalysis meteorological parameters. The results demonstrated that applying physics-based corrections could remarkably improve the quality of the dataset for better model performance with the adjusted R2 between PM10 and AOD increasing from 0.08 to 0.43, and the fitted results explained approximately 81% of the variability in the corresponding PM10 mass concentrations. Annual average PM10 concentrations estimated by the semi-physical GWR model indicated that many residential regions suffer from severe particle pollution. Moreover, the deviation in estimation, which primarily results from the frequent changes in elevation, the spatially heterogeneous distribution of monitoring sites, and the limitations of AOD retrieval algorithm, was acceptable. Therefore, the semi-physical GWR model provides us with an effective and efficient method to estimate PM10 at large scale. The results could offer reasonable estimations of health impacts and provide guidance on emission control strategies in China.
منابع مشابه
Real-Time Estimation of Satellite-Derived PM2.5 Based on a Semi-Physical Geographically Weighted Regression Model
The real-time estimation of ambient particulate matter with diameter no greater than 2.5 μm (PM2.5) is currently quite limited in China. A semi-physical geographically weighted regression (GWR) model was adopted to estimate PM2.5 mass concentrations at national scale using the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth product fused by the Dark Target (DT) ...
متن کاملGround Level PM2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO2 and Enhanced Vegetation Index (EVI)
Highly accurate data on the spatial distribution of ambient fine particulate matter (<2.5 μm: PM2.5) is currently quite limited in China. By introducing NO₂ and Enhanced Vegetation Index (EVI) into the Geographically Weighted Regression (GWR) model, a newly developed GWR model combined with a fused Aerosol Optical Depth (AOD) product and meteorological parameters could explain approximately 87%...
متن کاملModeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملNational-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD
High spatial resolution estimating of exposure to particulate matter 2.5 (PM2.5) is currently very limited in China. This study uses the newly released nationwide, hourly PM2.5 concentrations to create a nationwide, geographically weighted regression (GWR) model to estimate ground-level PM2.5 concentrations in China. A3 km resolution aerosol optical depth (AOD) product from MODIS is used as the...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کامل